Reverb

Home

 

Description

Digital reverb attempts to simulate the timbre of natural sounds as they reflect off of different surfaces in different sized and shaped rooms. Digitally implementing this effect is complicated, requiring a series of filters, delays, and sound dampening algorithms. Applying reverb to an audio signal requires a large amount of memory and processing time. Fortunately, a reverb opcode is built into csound. It is built using comb filters and all pass filters. This opcode requires three parameters - input signal, reverb time, and decay factor. The reverb time designates how long the reverberation will last. The decay factor designates as a percentage how much faster lower frequencies will decay than higher frequencies.

 

Graphical Depiction

 

Effect Formula

y[n] = x[n] + f(x[n], t, d)

y[n] = output signal

x[n] = input signal

f(x[n], t, d) = reverberation function

t = reverb time (sec)

d = decay factor [0,1]

 

Source Code

Reverb.txt

Reverb.csd

(.csd files can be viewed with Notepad or any text editor)

 

Example Audio Clips

Original Unprocessed Signal

Original

Reverb with 3 second reverb time and .5 decay

Reverb 3 sec 0.5 decay

Reverb with 2.5 second reverb time and .7 decay

Reverb 2.5 sec 0.7 decay

Reverb with 1.5 second reverb time and 0 decay

Reverb 1.5 sec 0 decay

 

References

Lehman, Scott (1996). Effects Explained. Harmony Central. Retrieved 6/04 from

http://www.harmony-central.com/Effects/effects-explained.html

 

Mikelson, Hans (2000). Modeling a multieffects processor in Csound. In Boulanger, Richard (2000), The Csound book (pp 575-594). Cambridge, MA: MIT Press.

 

Schindler, Allan. (1998). Eastman Csound tutorial.  Eastman School of Music. Retrieved 6/04 from

http://www.esm.rochester.edu/onlinedocs/allan.cs/

 

Vercoe, Barry. (1992). The public Csound reference manual, version 4.16. MIT Press.  Retrieved 6/04 from http://www.lakewoodsound.com/csound/hypertext/manual.htm

 

Zolzer, Udo. (2002). Digital audio effects. West Sussex, England: Baffins Lane.